橋梁用ステンレス排水装置

ご提案•事例集 2017車

- TSステンレス排水桝（TSDR－シリース）
 - 高気密ステンレス排水管（TS－PIPE）

㛢梁新設工事／補修工事に

橋梁用排水装置「高気密ステンレス排水管」と「円筒型枠」

โृ，

－橋梁用排水装置

－円筒型枠

－鋼製スパイラル鋼管（太陽光発電の基礎に使用例）

TSステンレス排水桝（TSDR－）／高気密ステンレス排水管（TS－PIPE）

目 次

トーカイスパイラル製「TSステンレス排水桝」のご案内です。 ステンレス製で長寿命，軽量低コスト，形状変更の自由度が高い等の特徴を備えます。新設橋のみならず現場毎で様々な条件が発生しやすい補修工事にも多数ご使用頂いています。

P． 3 特徴／（主に）自動車道用例
P． 4 （主に）プレテンホロー桁用例
P． 5 （主に）補修用例 横断歩道橋用 その他例
P． 6 （主に）角管仕様例
P． 7 活用事例
P． 8 製作事例（珍しい形状例等）
P． 9 製作事例
P． 10 製作事例／補修用図と歩掛例
P．11－19 図面例
P． 20 排水管との組み合わせご提案例

「高気密ステンレス排水管」の補修向けご案内です。
特に天板プレート—体型排水管「TS－PL＿PIPE」は使い勝手 が良く，多数ご使用頂いています。

P． 20 排水桝外の組み合わせ提案例
P． 21 状況別ご提案例
P． 22 天板プレート—体型排水管チャート図
P． 23 天板プレート—体型排水管製作•活用事例
P． 24 あとからフレキ／その他事例
P． 25 事例等
P．26－32 図面例

高気密ステンレス排水管／TS排水桝 特徵で提案例（3）

「高気密ステンレス排水管」「TSステンレス排水桝」の特長や仕様についてのご案内です。
比較表や実績数，ご提案例や経過写真等を揭載。ご検討， ご提案の一助に。
P． 33 高気密ステンレス排水管の特徴，比較表
P． 34 高気密ステンレス排水管について
P． 35 実績数（地区別一筧）
P． 36 ステンレスについて／絶緑について
P． 37 補修工事へので提案例
P． 38 新設工事へので提案例（他社品含む）
P． 39 経過報告写真
P． 40 ご提案お勧め環境の事例写真
P．41－42 ギャラリー

TSステンレス排水効 製作 ご提是例（1）－1

TSステンレス排水栘の主な特徴

※形状やサイズ等により仕様が異なる場合があります

－ステンレス（SUS304）製で耐久性に優れる

錆己ぶけ腐食摩耗が発生しにく長期に渡り安定した流量を確保でき，LCCに優れます
※溶接個所について：t＝2．0mm以下のSUS304材の加工品については溶接内外面へ耐食性の低下を防止する措置を講じています
※グレーチングは通常SS400めつき製（絶縁に関してはP．36をご覧ください）

－非常に軽量

荷重の掛からない箇所は薄型とし全体の重量，コストを抑えるよう設計人力で運搬可能なため，施工負担軽減，工期短縮に寄与します

－形状変更の自由度が高い

板金溶接による製作で型が不要。その為，形状や長さの変更も比較的手軽に可能です型費不要なので変更に伴うコスト増も最小限です

自動車専用道等に 比較的大型なタイプ TSDR－GH

様々な仕様で製作可能

一般的な形状 地覆側へ寄せた形状 偏芯した形状 勾配に合わせた形状 水抜き孔位置も任意で可能

例えば…積雪地へは幅広仕様を
縦断，横断勾配に設置時対応できる可動式排水桝自在勾配排水桝「まがるくん」（TSDR－GM）

上下分離式仕様
 TSDR－GT

現地で高さ調整と，角度の調整が可能です

TSステンレス排水效 制作ご提突例（1）－2

現場状況に応じ様々な形状で設計，製作しています

TSステンレス排水桝はSUS304製で耐久性に優れます。めつき不要で短納期での製作が可能です

TSステンレス排水枋 制作 ご提室例（1）－3

主に補修工事への使用例

舗装部高上げ用 排水桝
TSDR－GT

既設排水桝の高さが合わなし時，舗装厚に合わせ嵩上はし製作

TSDR－ML

TSDR－YJ

必要に応じて排水管へ接続

TSDR－MH

排水管との組み合わせ例 \rightarrow P．20をご覧下さい

床版貫通パイプ TSDR－MH

床版貫通 角型仕様
TSDR－MH

排水用樋など TSDR－TN

隙間が狭い等，排水桝や排水管の設置が困難な場合に

その他製作例 TS－PL＿BG

TSステンレス排水維 製作ご提暴㑬（1）－4

プレテンホロー桁，地覆貫通管等へ

角パイプ仕様について

角管仕様が用いられる主な例

「TSステンレス排水桝」をご検討下さい
－管を通すスペースが狭く流量確保が難しい \rightarrow 角パイプ部のサイズを自由に製作可 （枠部分もご要望通り可能です）

－設置箇所が限定される

\rightarrow 受枠形状も自由に製作可能
－将来の補修交換が困難
\rightarrow ステンレス製で長寿命

例）水抜き孔，導水管接続孔も指定の箇所へ
水抜き孔，導水パイプ接続用孔も任意の形状，位置に製作可能です。ご要望をお伝え下さい

例）管部を横長とし流量を確保する
縦横とも任意の長さで製作可能の為，スペースを最大限活用出来る

例）角パイプ桝と角パイプ排水管接続例

排水管側の管径を桝側の管径より少し大きなサイズで製作しボルトで接続した例になります

TSDR－MH（角パイプ仕様）
Φ（丸パイプ）／\square（角パイプ）断面積比較

内径	所面㺓 $\left(\mathrm{mm}^{2}\right)$
$\phi 100$	7,853
$\phi 150$	17,671
$\phi 200$	31,415
$\square 50 \times 100$	5,000
$\square 50 \times 150$	7,500
$\square 50 \times 200$	10,000
$\square 75 \times 100$	7,500
$\square 75 \times 150$	11,250
$\square 75 \times 200$	15,000
$\square 100 \times 150$	15,000
$\square 100 \times 200$	20,000
$\square 100 \times 250$	25,000
$\square 125 \times 200$	25,000
$\square 125 \times 250$	31,250
$\square 125 \times 300$	37,500
$\square 150 \times 200$	30,000
$\square 150 \times 250$	37,500
$\square 150 \times 300$	45,000

土砂等の詰まりを低減するため，可能な限り大口径をおすすめします

桝に土砂が堆積し詰まつている例

地覆貫通管が詰まり水が流れていない例

TSステンレス排水什 制作ご提量例（1）－5

ご活用頂いた事例のご紹介

補修 既設角パイプ移内へ新しい角パイプ桝を設置イメージ

傷んでいるが既設管撤去が困難な場合等

TSステンレス排水桝なら
－絶緑は必要になるが薄型の為，流量が確保しやすい
ミリ単位で角バイプのサイズを決められる軽量の為，施工性が良い

TSDR－MH（角パイプ仕様）

設置前 既設栘

設置後 床版上

サイズ確認中

設置後 桁下面

補修 既設桝内へ新しい排水桝を設置イメージ ※既設は枠を流用

管部のみ撤去

新しい桝を設置

課題：
幹線道路の為，通行規制を最小限に \downarrow

パイプ部を張出し下面からコア削孔。集水部は補修とし，その中へ新しい桝を設置する ことで最小限の規制とした

TSDR－MH

下面よりコア削孔

設置作業

集水部のケレン

設置

TSステンレス排水桝なら
絶縁は必要になるが薄型の為，流量が確保しやすい
ミリ単位で丸パイプのサイズを決められる（ $\varphi 90$ 以上，それ以下はJIS規格パイプ を使用）
軽量の為，施工性が良い

補修 既設桝内へ新しい排水桝を設置イメージ ※既設栘の集水部より下を流用

TSステンレス排水枋 制作 ご提晊例（1）－6

TSDR－MH（角パイプ仕様）

（1）鉛直部上面
\rightarrow 脱着可能／掃除用蓋仕様
（2）目皿部
\rightarrow 脱着可能／掃除用蓋仕様
（3）横導水部
\rightarrow 上面は水平に／下面は勾配付き
（角度，形状ともご要望にお応えします）
※床版用の水抜き孔も自由な形状，位置で製作します

TS－PL＿PIPE－T（受别型排水管）

地覆貫通管（角パイプ仕様）で3次元に

地覆貫通管（角丸パイプ仕様）

TSステンレス排水枋 制作 ご提突例（1）－7

－TSDR－MH
写真は歩道部に使用した例になります。枠部分と集水の勾配箇所の高さを抑えて製作した例になります。流末は斜切仕様です。

－TSDR－MT（型枠一体仕様）
補修工事にて地覆を削孔し交換したタイプです。地覆外側からプレートをアン カーボルトで固定します。このプレートは固定と型枠としても機能しています。

－TSDR－MH

左は 200×185 の製品写真，右は 150×150 の設置後写真になります。小型のものでも1基よりお気軽にご相談下さい。

－TSDR－MH
管部の流末に向けて，曲げ管仕様で製作した例になります。

－TSDR－MH
桝の本体箇所と管の接続部で曲げ仕様とした例になります。設置環境に応じ，色々なパターンで製作可能です。

－TSDR－GT
集水し横に導水する排水桝の製作例です。輪荷重対応の為，グレーチングを使用しています。

－TSDR－MH／MT
小型の箱型枠に左はステンレス4OSU管，右は縦型の箱枠形状に $\varphi 90$ の当社仕様管の製作例です。 $\varphi 90$ 未満の丸管はJIS規格の管を使用します。

－TSDR－GT

グレーチング仕様で偏芯のある大型タイプ排水桝となります。特殊な形状でも先ずはお気軽に相談下さい。

－TSDR－MH
$150 \mathrm{~mm} \times 150 \mathrm{~mm}$ の小型の排水栘となりますが，目皿を低頭ボルト固定と し清掃時の取り外しを可能としています。

－TSDR－G H
500×250 枠サイズでグレーチング仕様例。より小型のグレーチング仕様（縦断側250／横断側110程度より※開口部面積は小さくなる）も可能です。

参考 排水桝補修図 —例

※図，工法とも参考のイメージとなります

材 料	仕 様	備 考
TSステンレス排水桝	TSDR－MH（SUS304） $175 \times 175 \quad$ ¢100 $\quad \mathrm{L}=1000$	目血部 $\mathrm{t}=12$ 栘枠部 $\mathrm{t}=6$ パイプ部 $\mathrm{t}=1$ 約8kg／基

工 法	内 容	備考
舗㨬撤去	コンクリートカッター，バックホウ等	（鉄筋探査）
コア削孔	\＄130 コアボーリングマシン	
排水桝設置／／⿺𠃊⿻丷木斤斤斤面修復	グラウト材（エポキシ，無収縮モルタルレ等） パッキン（シール材等）	※下記の参考歩掛はこの箇所のみ
舗装修復	アスフアルト埔装	必要に応じ導水パイプ設置，防水工

参考歩掛（この例の場合の自社歩掛）排水桝設置／断面修復
排水桝設置5箇所当り 注）舗装撤去，コア削孔，舗装修復は含まれない

名 称	規 格	単 位	数 量	摘 要
世話役		人	1	
普通作業員		人	4	
排水栘	$\begin{gathered} \hline \text { TSDR-MH } 175 \times 175 \\ \varphi 100 \mathrm{~L}=1000 \\ \hline \end{gathered}$	基	5	別途
材料費	グラウト材，パッキン等	1	式	別途
諸雑費		式	1	労務費の15\％

※当社調べの参考歩掛（管理費等含まず）各種条件により価格は異なります。正確な設置費用は必ず
施工業者様へご確認下さい。（当社では排水栘の設置，施工は行つておりません）

TSステンレス排水枋 製作 ご提室例（1）－9

TSステンレス排水桝 制作己゙提晴例（1）－10

TSステンレス排水桝 製作 ご提案例（1）－12

TSステンレス排水桝 製作 ご提窴例（1）－13

TSステンレス排水桝 製作 ご提案例（1）－14

TSステンレス排水斻 製作 ご提急例（1）－16

TSステンレス排水桝 製作 ご提案例（1）－17

TSステンレス排水游 高気密スデンス排水管 絸

排水桝と排水管の組み合わせ己提案例

埋込箇所で取替困難な場合等

－暴露状態になる集水部が傷んでいる －開口部が小さい為集水に難がある

－湿閵状態になりやすい流末が傷んでいる －長さが短い為，他の構造部に飛沫水で損傷

集水部と流末を補修

TSDR－GT

TSDR－MT

- 舗装部を斫り，集水部のみ交換する
- 開口部を大きくし集水しやすくする
※輪荷重対応の際はグレーチングタイプを使用
TS－PL＿PIPE－L（排水管ページをさて筧下さい）

既設流末を処理し，被せ式の天板プレートー体型排水管を使用
－長めのものを使用し導水 を確実に行い，飛沫水 による被害を抑える ※偏芯や曲管仕様も可能

排水桝（地覆貫通管），排水管の組み合わせ

排水桝と排水管を組み合わせたで提案が可能です。

納期，予算，施工性も含め有益なご提案が出来るよう努めてまいります。橋梁工事にて排水関係の際は排水桝，排水管問わずお気軽にご相談下さい。

高気密ステンレス排水管 補修向け製作ご提定例（2）－2

高気密ステンレス排水管は様々な形状で製作が可能です

ここでは天板プレートを使用した場合のバリエーション例のご紹介です
… 天板プレート一体型排水管 例 …
※必要に応じ支持金具をご使用下さい
TS－PL＿PIPE－L
天板プレート薄型タイプ t＝2mm（全周曲げ加工）

※張り出し部角度に合わせ製作可能

スパイラル直管 スポット溶接一体型 TS－PL＿PIPE－L ※支持金具を必ずご使用下さい写真B．

TS－PL＿PIPE
天板プレート t＝6mmタイプ

プレート形状やアンカー用孔の形状等は自由に製作可能形状例

※支持金具を必ずご使用下さい

．．．天板プレートー体型排水管 TS－PL＿PIPE／TS－PL＿PIPE－L チャート 例 ．．．

高気密ステンレス排水管補修向け製作ご提穼例（2）－3

天板プレートー体型排水管（TS－PL＿PIPE－L／TS－PL＿PIPE）製作•活用事例

天板プレートー体型排水管 活用例 ※必要に匛し支持金具をで使用下さい

より確実な導水を行うには…

○天板プレートー体型排水管を横向きに設置し桁への漏水を防ぐ

直管で延長が長し場合，スパイラル直管仕様にすることで低コストになります。
（金具の長さ，必要数等との兼ね合いで どの組み合わせがお得か異なります。お気軽にお問合せ下さい）

高気密ステンレス排水管 補修向け 製作ご提案例（2－4

「TSあとからフレキ」

「TSあとからフレキ ベース部」
TS－FTL＿L
プレートー体型フレキシ ブルチューブ取付ベース
※張り出し部ヘアンカーで固定します

「TSあとからフレキ 金具部」 TS－FTL＿K SUS製取付金具
※アンカー固定のフレキシブルチューブ取付用金具です。L＝200，400の2種類です

「TSあとからフレキ 管接続部」TS－FTL＿S排水管用 後付けサヤ管一体バンド ※既設排水管にサヤ管を固定し取付けできます（使用する管璉，外径をで指示下さい）

使用方法（対象排水管の外径に合わせ製作します，径をご指示下さい）

天板プレートー体型施行例 －金具無しでも取付は可能ですか環境，長さに応じ支持金具をご使用下さい

短納期対応例（めつき不要で短納期）
－緊急で必要な際，お問い合わせ下さい

スパイラル直管＋斜切管施工例
－スパイラル直管は特に低コストです

緑端拡幅，橋脚巻立工事への施工例
－正確な形状で製作可能です
高架橋／横引き施工例
－横引きにスパイラル直管を使用で低コストになります

受桝付排水管施工例

上部一下部間に伸縮管を使用せず，下部工上端を受桝付排水管で設置した例です

実測調査，提案，図面作成行しいます詳しくは，お問い合わせ下さい

－薄型天板プレートー体型排水管 TS－PL＿PIPE－L
より軽量な薄型タイプになります。天板プレート部を $\mathrm{t}=6 \mathrm{~mm}$ からを $\mathrm{t}=2 \mathrm{~mm}$ と し軽量化を図っています。外周部に曲げ加工を施し強度を確保しています。

－SGP管より部分交換例

写真の例では鋼製排水栘，SGP管との接続部にそれぞれ溢水防止パッキン （RDジヨイント），伸縮管を使用し絶縁をしています。

－高気密ステンレス排水管－SGP管 フランジでの接続例

高気密ステンレス排水管側，SGP管側ともフランジを使用し接続した例です。 ゴムパッキンと耐電蝕処理加工ボルトを使用し絶縁。

－スパイラル直管（垂れ流し），加工管にRDジヨイントを使用した例
天板プレート一体型排水管を用いる他に上記写真のように，メイコーエンジニ ヤリング製のRDジョイントを用いる方法もあります。

－鋳物排水桝との接続例（レジューサー／受桝仕様例）

高気密ステンレス排水管と鋳物排水桝との接触を避ける為，排水管側の接続部をしジューサー／受桝仕様とした例になります。

図面例（15）

－高気密ステンレス排水管専用 薄型SUS取付金具（プレス加工）

プレス加工で強度を確保しつつ薄型（ $\mathrm{t}=2 \mathrm{~mm}$ ）としています。低コストおよび大幅な軽量化で施工負担軽減が図れます。

高気滵ステンレス排水管 補修向け 製作 己提突例（2）－6

天板プレートー体型排水管 例－3
天板プレートー体型排水管 様々な使用例

流水量が多い場合
軽量化を優先したい場合 （スパイラル直管仕様）

障害物によりプレートの
床版の下面（桝開口付近）の腐食により大きさが制限 アンカー位置が制限

高気密ステンレス排水管 補修向け 製作 ご提案例（2）－7

高気密ステンレス排水管 補修向け製作 ご提案例（2）－8

高気密ステンレス排水管 補修向け 製作 ご提案例（2）－9

鋳物排水桝との絶縁 接続例

既設の桝（鋳物 等）へ 高気密ステンレス排水管を非接触で取付する
\rightarrow 既設の桝の流末径より大きめの管径とし非接触とする

例1）桝流末より大口径の管径使用例

例2）レジューサー／受森仕様例

－（10）

鋳物排水桝との絶縁 接続例

既設の桝（鋳物 等）に 高気密ステンレス排水管を接続する
\rightarrow RD－ジョイント（メイコーエンジニヤリング社製）を使用し絶縁
$\phi 150$ 用のRDジョイント使用例

高気密ステンレス排水管 補修向け 製作 ご提窭例（2）－10

部分取替の補修施工例
－（9）－（伸縮ゴム）と－（11）－（RD－ジョイント）の仕様例

高気害ステンレス排水笨 補修向け 製作 己提案例（2）－11

オリジナル取付金具（SUS304）
高気密ステンレス排水管専用 TS SUS304（薄型 リプ・フランジ加エ）取付金具
TS SUS取付金具（天井吊り金具）

【特徵】
－ステンレス製でありながら低コスト
軽量で運搬／施工の負担が軽減
t＝2． 0 mm でありながら，プレス加エにより強度を確保しています（TSプレート） オールステンレス製のため，長寿命が期待できます
【適用範囲】リートアンカー取付け専用となります ※左記の制約があるため，
【適用範囲】クリートアンカー取付け専用となります

$$
H=300 \mathrm{~mm} \text { (壁から管心) までが定番となります 主に下部工でご利用頂いております }
$$

～高気密ステンレス排水管専用 TS SUS取付金具 取付方法～
$\begin{array}{ll}\text { アンカーボルトを打ち込んだ後，排水管をバンドではさみ込む } \\ \text { コの字型の金具をB．N．} 1 \text { 位固定 } & \text { 位置確定後，B．N．で固定する }\end{array}$

sus排管 －（15）－

※既設の金具（SS400）を使う場合は厚手のゴムを使用し 径を合わせます SS400金具の場合でも ゴムを内側に貼り付ければ使用可能

取付金具 使用例（SS400＋溶融亜鉛メッキ）
高気密ステンレス排水管用－外径 $\phi 202$－内径 $\phi 200$ 例－

横引き 使用例

縱引き 使用例

縦引き 使用例

高気密ステンレス排水管／TS排水桝 特晸 ご提穼例（3）－1

「高気密ステンレス排水管」（TS－PIPE）

低コストな「TS－PIPE スパイラル直管」，加工自由度の高い「TS－PIPE 加工管」の組み合わせから成る，優れた特徴を持つ橋梁添架排水管です。

主な特徴

長寿命：耐寒性，耐熱性，耐候性，耐蝕性に優れるオーステナイト系ステンレス SUS304材使用軽量 ：SGP管，VP管等と比較し軽量となり施工，運搬，安全に寄与します低コスト：SGP管に対しイニシャルコストで，VP管に対しLCCに優れます

（2）加工（曲）管

（3）TS取付金是

（4）TS伸縮管

スパイラル直管 0.5 mm 厚（ φ 200）のSUS304コイルから，止水処理を施しスパイラル状に加工し製作
加工管 1.2 mm 厚（ $\varphi 200$ ）のSUS304材を展開，レーザーカットし筒状に加工しTIG溶接（バックシールド処理含）後，電解処理にて焼け取りし製作
－ステンレス鋼材，SUS304を使用しており耐久性に優れます。塩害や寒暖，紫外線に強く長寿命です
－薄型／軽量で施工性，安全性に極めて優れます
－イニシャルコスト，ライフサイクルコストに優れます
排水管に必要な強度を確保しスパイラル製法等で薄型としステンレス製ながら，低コストでのご提案が可能
（おおよそ C 150 以上の管径からSGPめつき管との比較で低コストでのご提案が可能）※管径や形状等により異なります
•価格について＂スパイラル直管＂仕様：φ 200（ $\mathrm{t}=0.5$ ）4，450円／m その他径はお問合せ下さい
＂加工管＂仕様：形状，長さ等により異なりますのでお問い合わせ下さい
－全国実績600件以上。（平成29年8月現在）
－ステンレス鋼材は殆じがリサイクル可能な環境にも優しい鋼材です
－新設，補修問わず幅広くご活用頂けます。めつき不要の為，短納期での製作も可能です
－詳しくはお気軽にお問合せ下さい。
※2017年4月を持ちまして，NETIS実施要領に基づく掲載期限を迎えたためNETIS掲載を終了致しました。 掲載時NETIS番号 CB－980013－VE（活用促進技術）

「高気密ステンレス排水管」他管種比較表 ※			※ $\mathbf{2 0 0}$（他管種は200A）の比較になります。通常は大口径になると割安に，小口径になると割高に，スパイラル直管比率が高くなると割安になります。排水管の形状や現場状況，環境により異なります。 現場每に試算致します。お気軽にお申し付け下さい						
	高気密ステンレス排管			硬質坆化ビニル管（VP管）			配管用炭素鋼銅管（SGP管）		
$\begin{gathered} \varphi 200 \\ 200 \mathrm{~A} \\ \text { での一例 } \end{gathered}$									
材質	ステンレス（SUS304）			硬質塩化ビニル			炭素鋼（SS400）		
重量	スパイラル直管約 $3 \mathrm{~kg} / \mathrm{m}$ 加工管約 $6 \mathrm{~kg} / \mathrm{m}$			約10kg／m			約 $30 \mathrm{~kg} / \mathrm{m}$		
特徵	スパイラル直管は厚さ 0.5 mm の薄板をスパイラル状に成形 しているため，薄型•軽量ながら高強度な製品である。加工管は厚さ 1.2 mm の板で成形し，排水時の水の圧力に耐える構造としている。			JISの規格があり，汎用品のため入手が容易である。熱可塑性樹指を使用しているため錆の問題はないが高温での物性低下，低温でのもろさに注意。			JISの規格があり，汎用品のため入手が容易である。		
施工性	非常に軽爯であるため，施工性に優わ		\bigcirc	軽量であり，重機等の使用は必要としない。		\bigcirc	他の管種に比較し重量があり，配管に重機が必要とな る。		\triangle
維持管理	内面が平坦なため，土砂等の堆積が生 ンレスは非常に安定した金属であり，雪剤に対する耐性も優れている。ただ管は凹みに注意が必要。	くい。ステ 防止剤，融 パイラル直	\bigcirc	内面が非常に平坦なため，士砂等の堆積が生じにく い。経年で紫外線等による劣化が生じる。		\triangle	士砂の流下によって内面の西鉛めつきが削り取られた場合，融雪剤，湅結防止材による腐食が急速に進む。		\bigcirc
耐候性	ステンレスは不動態皮膜を形成し，鉄を酸化から守るため錆の発生を抑制	より内部の	\bigcirc	紫外線による延性の劣化，寒冷地における低温脆性の問題がある。これらにより管が脆くなると強度が極端 に劣化する。		\triangle	基本的に耐候性に優れるが，上記のように亜鉛めつき が削り取られた場合には腐食が発生する。		\bigcirc
コスト 高気密ステン レス排水管材	初期費用： 材料 $100+$ 施工費（歩掛） $13=113$ 100年後のLCC ：	$\begin{gathered} \text { イニシャル } \\ \text { コスト } \end{gathered}$	\bigcirc	初期費用： 材料 $77+$ 施工費（歩掛） $13=90$ 100年後のLCC：	イニシャル コスト	－	初期費用： 材料 $125+$ 施工費（歩掛） $20=145$ 100年後のLCC：	イニシャル コスト	\triangle
料贊を100と し表記	酎用年数50年 2回交換 226 初期贊用＋交換贊用 339	ライフサイ クルコスト	－	臫用年数25年 4回交換 360 初期費用＋交換費用 450	$\begin{array}{\|l} \text { ライフサイ } \\ \text { クルコスト } \end{array}$	\triangle	酎用年数 35 年 2 回交換 290 初期贊用＋交換贊用 435	$\begin{array}{\|l\|} \text { ライフサイ } \\ \text { クルコスト } \end{array}$	\triangle
まとめ	安定した性質をもつステンレスであり，長期間の使用 に耐えられる。		\bigcirc	汎用性が高く低コストで入手できる材料であるが維持管理，耐候性の面で他管種に劣る。		\triangle	汎用性が高く強度も優れ，どこでも入手できる材料で あるが施工性，経済性の面で高気密ステンレス排水管 に劣る。		\triangle

高気密ステンレス排水管／TS排水桝 特徵 ご提案例（3）－2

「高気密ステンレス排水管」と「一般ステンレス鋼管」比較

	高気密ステンレス排水管		（一般）ステンレス管
	スパイラル管仕様	加工管仕様	配管用ステンレス鋼管（SUS－TP）
重量	非常に軽い	軽い	重い
価格	非常に低コスト	比較的低コスト ※直管部長で異なる場合あり	－－
	大口径ほど，より割安に ※小口径の場合，割高になる場合があります		－
曲管等，加工物の製作	直管のみ，不可	加工性が良く様々な形状で製作がしやすい	可能だが高価になりやすい
接続	差込み式（差し込み後，シール＋TSカップリング）※シンプルで低コスト		可撓継手やフランジを用いる
注意事項（凹み）	薄型の為，TP管と比較すると凹みに注意必要		肉厚があり凹みに対し問題無し
用途	橋梁添架専用		汎用性が高い
主要管径 厚み，重量比較			
¢100（TP管の場合100A）	外径 $\varphi 102 \mathrm{t}=0.5$（ハセ部t $=2.0) 1.5 \mathrm{~kg} / \mathrm{m}$	外径 $\varphi 102 \mathrm{t}=1.0 \quad 2.6 \mathrm{~kg} / \mathrm{m}$	外径 $\varphi 114.3$ Sch10S $\mathrm{t}=3.08 .32 \mathrm{~kg} / \mathrm{m} / \mathrm{Sch} 20 \mathrm{~S} \mathrm{t}=4.011 .0 \mathrm{~kg} / \mathrm{m}$
¢150（TP管の場合150A）	外径 $\varphi 152 \mathrm{t}=0.5$（八ゼ部t $=2.0) ~ 2.3 \mathrm{~kg} / \mathrm{m}$	外径 $\varphi 152 \mathrm{t}=1.24 .6 \mathrm{~kg} / \mathrm{m}$	外径 $\varphi 165.2$ Sch10S t＝3．4 13．7kg／m／Sch20S t＝5．0 $20.0 \mathrm{~kg} / \mathrm{m}$
¢200（TP管の場合200A）	外径 $4202 \mathrm{t}=0.5$（八ゼ部t $=2.0) 3.0 \mathrm{~kg} / \mathrm{m}$	外径 $\varphi 202 \mathrm{t}=1.26 .0 \mathrm{~kg} / \mathrm{m}$	外径 $\varphi 216.3$ Sch10S $\mathrm{t}=4.021 .2 \mathrm{~kg} / \mathrm{m} / \mathrm{Sch} 20 \mathrm{~S} \mathrm{t}=6.534 .0 \mathrm{~kg} / \mathrm{m}$
¢250（TP管の場合250A）	外径 $\varphi 252 \mathrm{t}=0.6$（八ゼ部t $=2.4$ ） $4.5 \mathrm{~kg} / \mathrm{m}$	外径 $\varphi 252 \mathrm{t}=1.2 \quad 7.6 \mathrm{~kg} / \mathrm{m}$	外径 $\varphi 267.4$ Sch10S t＝4．0 $26.2 \mathrm{~kg} / \mathrm{m} / \mathrm{Sch} 20 \mathrm{~S} \mathrm{t}=6.542 .2 \mathrm{~kg} / \mathrm{m}$
¢300（TP管の場合300A）	外径甲302 t＝0．6（ハゼ部t＝2．4） $5.4 \mathrm{~kg} / \mathrm{m}$	外径 $4302 \mathrm{t}=1.29 .1 \mathrm{~kg} / \mathrm{m}$	外径 $\varphi 318.5$ Sch10S $\mathrm{t}=4.535 .2 \mathrm{~kg} / \mathrm{m} / \mathrm{Sch} 20 \mathrm{~S} \mathrm{t}=6.550 .5 \mathrm{~kg} / \mathrm{m}$
			※上記は一例です。他にも様々な仕樣があります

よく頂くご質問について

－スパイラル直管仕様について

割り付けの際の延長につきまして，高気密ステンレス排水管図面の長さにて製作しますので，定尺という考え方はございませんが，後述する金具ピッチとの兼ね合いを考えま すと，塩じ管同様に 4000 mm で設計されることをお勧めします。
また，運送や現地での取り回し等を考慮し最大でも 4500 mm 以下となるような設計をお願いします。

－加工管仕様について（展開切板からの溶接仕上げ）

高気密ステンレス排水管の曲管部は，仕様上エビ折れ形状となります。曲げ半径につきましてはセンターピースの大きさによって変化させています。最少曲ば半径につきましては管径により違いますが，円周方向の溶接線同士のクリアランスが 5 mm 以上取れる形状であれば製作可能です。
また，センターピースを除いたL型の管も製作できますが，この場合は排水工指針上，清掃用の蓋が必要とされています。その場合，コスト上の観点から蓋はフランジタイブを お勧めします。基本的には曲部の溶接線同士が重ならず，曲部での径の変化がなく，二次元上にて表現できる形状であれば対応可能です。2次元では表現できない管 （特に合流管や2箇所以上の曲部があるもの）については製作できない場合がありますので，事前にで相談下さい。

－接続部について

管同士の接続は下流側を 80 mm 伸ばし，差込用の＂つぶし＂を作成，施工時に差込後，シーリングし「TSカップリングをを被せる仕様です。

－取付金具について

取付金具の使用ピッチは2000mm以下とさせて頂いております。
また，高気密ステンレス排水管は1本の管に付き，原則2か所以上の支持をお願いしております。
（上流•下流部の管がどちらも 2 箇所以上にて支持されている場合の間にある管や，排水桝等にボルト固定されている場合は取付金具1か所でも可能）
形状•材質としましては，ステンレス製でありながらコストダウンが図れる高気密ステンレス排水管專用品がありますが，縱引き専用かつH＝350以下 10 mm 刻みでのライン ナッブとなっておりますので，使用は下部工に限られるケースが多いのが現状です。
横引き部や，H＝350を超えるケースでは，コスト面の観点から他管種と同じくSS400の溶融亜鉛メッキ仕様を標準とさせて頂いております。
また全ての取付金具の円周内面には管のズレ防止と異種金属接触腐食が起こらない様，絶縁ゴムを貼り付けております。
局部的に高負荷のかかる金具（Uボルトを使用するタイプ等）は凹みの懸念がある為，使用を避けて下さい。

－粗度係数について

ステンレス鋼管の粗度係数は0．01ですが高気密ステンレス排水管は，SUS304の2B材を使用しております。（2Bとは冷間圧延にて表面に鈍い光沢を出した材料です ＝スキンパス）また，スパイラルル形状である直管は外面には凹凸がありますが，内面は平滑に仕上がつております。曲管部は内外面共に平滑です。

－フレキシブルチューブ接続について

主に右記の3パターンでの接続となります。
近年では確実な取付の為，（1）もしくは（2）の＂さや管＇有り仕様が増えています。ただし排水管の工場製作時に溶接で取り付ける必要があります。
位置や向き等が末決で現場合わせの場合は（3）となります。現場合わせでさや管（ネジ切付）仕様とする場合は「高気密ステンレス排水管 補修向け製作，ご提案例（2）－3」掲載の「TSあとからフレキ」を用いネジ㘮付さや管で確実に固定 する方法があります。

－SUS304の熱膨張率について（比較として硬質塩化ビニル管，炭素鋼管）

	SUS304	硬質塩化ビ二ル管	炭素鋼管
熱膨張率係数（ $\left.10^{-6} \mathrm{~mm} /{ }^{\circ} \mathrm{C}\right)$	17.3	70	11.6

高気密ステンレス排水管／TS排水桝 特畋 己゙提案例（3）－3

「高気密ステンレス排水管」「TSステンレス排水桝」地区別実績案件数

実際の現場住所による振り分けの為，発注者様の都道府県と異なる場合があります。 また，その他理由により実数と異なる場合があります。

	実績件数	国交省
全国	609	330
※平成29年8		
中国地方	実績件数	国交省
鳥取県	3	2
島根県	2	
岡山県	1	
計	6	2
四国地方	実績件数	国交省
香川県	1	
愛媛県	5	
高知県	1	
計	7	0

国土交通省近畿地方整備局浪速国道事務所第二阪和国道南山中1号橋PC上部工事

北海道	実績件数	国交省	県市町村	その他
北海道	$\mathbf{1 7}$	12	3	2
計	$\mathbf{1 7}$	12	3	2
東北地方	実績件数	国交省	県市町村	その他
青森県	$\mathbf{1 5}$	2	13	
岩手県	$\mathbf{2}$	2		
宮城県	$\mathbf{6}$	1	4	1
秋田県	$\mathbf{3 0}$	13	17	
山形県	$\mathbf{7}$	3	4	
福鳥県	$\mathbf{1 4}$	14		
計	$\mathbf{7 4}$	35	38	1

淬縄

九州地方	実績件数	国交省	県市町村	その他
福岡県	$\mathbf{1}$			1
長崎県	$\mathbf{1}$	1		
鹿児島県	$\mathbf{1}$	1		
計	3	2	1	0

中部地方	実績件数	国交省	県市町村	Zの他
長野県	$\mathbf{2 0 7}$	96	108	3
新潟県	$\mathbf{1 1}$	5	6	
富山県	$\mathbf{9}$	5	4	
石川県	$\mathbf{3}$	1	1	1
岐阜県	$\mathbf{4 3}$	26	13	4
静岡県	$\mathbf{8}$	6	2	
愛知県	$\mathbf{1 5}$	8	7	
福井県	$\mathbf{4 7}$	41	6	
計	$\mathbf{3 4 3}$	188	147	8

新潟 福宮城
群馬 栃木
群馬 栃木
埼玉 治城
山梨）東京愛知静岡一神奈川干玄

メッシュ平均値図：参考
排水管材料にとつて問題になる紫外線，気温（寒さ，融雪剤），積雪（凍結，融雪剤）に関連するデータを抜粋。

高気密ステンレス排水管／TS排水桝 特徵 ご提案例（3）－4

ステンレスについて

ステンレスの特長

鉄にクロムを添加していくとだんだんとさびにくくなっていきます。10．5 \％以上のクロムを添加し非常にさびにくくなったものをステンレス鋼 といいます。ステンレス鋼は耐食性以外にも耐熱性•加工性•強度など優れた特性を備えています。意匠性にも優れ，メンテナンスが容易であ ることも大きな特徴です。環境に対する社会の関心が高まるなか，100\％リサイクル可能な材料として高く評価され，大変注目されています。

ステンレスの意味

ステンレス鋼は英語で「Stainless Steel」と言い，＂さびにくい鋼＂という意味です。従来日本では「不銹鋼」という名で呼ばれていましたが，最近では「ステンレス鋼」にほぼ統一されました。
ステンレス鋼は鋼材のJIS規格（耐熱鋼規格を含む）だけでも100種類以上の鋼種があり，さらに各社が開発した独自鋼種があります。これら数多くの種類のステンレス鋼がそれぞれ適した用途に使い分けられています。
名前の示す通りステンレス鋼は一般の鋼に比較すると極めてすぐれた耐食性を有する材料ですが，特定の環境，使用条件の下では「さびる」こと がありますので正しい使い方をする事が大切です。

さびに強いしくみ

鉄にクロムを添加するとク口ムが酸素と結合して鋼の表面に薄い保護皮膜（不動態皮膜）を生成します。この不動態皮膜がさびの進行を防ぎます。 またこの不動態皮膜は100万分の3mm程度のごく薄いものですが，大変強靭で，一度こわれても，周囲に酸素があれば自動的に再生する機能を もっています。

鋼種	臨界工業 （川崎）	都市工業 （王子）	海岸 （興津）
SUS304	0.055	0.002	0.10
SUS430	0.13	0.036	0.16
垔鉛鉄板	88.0	52.6	39.0
耐候性䤡板	66.0	29.3	39.0

出所：防食技術19（1980）401－409
ステンレス協会HPより引用
「TSステンレス排水桝」「高気密ステンレス排水管」はステンレス鋼の内「オーステナイト系ステンレス SUS304」を使用し製作しています。

オーステナイト系ステンレスについて

18クロムー8二ッケルのSUS304が代表的です。オーステナイト系ステンレスは一般に延性および靭性に富み，深絞り，曲げ加工などの冷間加工性が良好で溶接性も優れています。さらに耐食性も優れ，低温，高温における性質も優秀です。
これらの優れた性質のため，用途は広範囲にわたつており，家庭用品，建築用，自動車部品，化学工業，食品工業，合成繊維工業，原子力発電， L N Gプラントなどに広く用いられています。
製品形状は薄板が最も多く，そのほか厚板，棒，管，線，鋳物など全般にわたり，製造量は全ステンレス生産量の 60% を越えます。析出硬化系：熱処理（析出硬化処理）によって非常に高い硬度が得られるステンレスです。

ステンレス協会HPより引用

異種金属接触について

電位差のある金属同士が電解質中で電気的に接すると電位差により電位の低い方の金属の腐食が促進する現象。例えばイオン化傾向の低い【貴な金属】ステンレスと，ステンレスよりイオン化傾向の高い【卑な金属】他鋼材が電解質中で接触することにより電流が流れイオン化傾向の高い他鋼材が腐食が生じる。腐食の速さは面積比によっても異なる。イオン化傾向の高い＇大きな他鋼材＇に＇小さなステンレス＇が接触しても影響は殆ど無い か，少ない。逆に＇大きなステンレス＇にイオン化傾向の高い＇小さな他鋼材＇では急速に腐食してしまう。
TSステンレス排水栘，高気密ステンレス排水管では主に下記の絶縁を施しています。

TSステンレス排水桝／高気密ステンレス排水管 絶縁（異種金属接触対策）例

－TSステンレス排水桝＋SS400めっきグレーチング 絶緑例

－高気密ステンレス排水管＋SS400めつき取付金具 絶緑例
－鋳物排水桝と高気密ステンレス排水管接続 絶緑例耐電蝕処理加エボルト＋EPDMを使用した例

直接触れないよう排水管を大口径にした例

[^0]耐電蝕処理加工：当社ではステンレスボルト等にラスパート加工（株式会社日本ラスパート製）等を施したものを使用しています。

高気密ステンレス排水管／TS排水桝 特晸 ご提穼例（3）－5

補修 ご提案例と排水関連不具合例写真

TSステンレス排水桝 ご提案例

桝やパイプが傷んでいる以外の課題として
（1）集水部が小さく詰まりやすい
（2）管そのものが細い
（3）水抜孔が無く床版上に水が溜まりやすい
（4）流末が短く，飛沫水の影響 を受ける

床版防水，舗装工事へ合わせ ご提案例として
（1）集水部を大きくする
（2）管径を大きくする
（3）水抜孔を設け床版上の水を導水可能とする
（4）流末を長くし飛沫水の影響を軽減する排水栘例として
\rightarrow P．9，10をご覧下さい

目皿部（鋼製）損傷例

排水管 不具合例：排水管の劣化は漏水により橋本体への影響が懸念されます
既存材料課題点
塩じ管：紫外線劣化，寒さによる耐衝撃性の低下
SGP管：塩害等による腐食，重量物で施工撤去時 の負担が大きい，高価
\rightarrow 高気密ステンレス排水管を比較検討下さい

フレキシブルチューブ 脱落例

SGP管 腐食例

VP管 損傷例

SGP管 腐食例

高気密ステンレス排水管／TS排水桝 特徵 ご提寀例（3）－6

新設 他社製品を含めご提案例

－排水工指針より（指針は発注者樣により異なります。参考例としてこ筧下さい）

（1）SGめつきグレーチング例

SGめつきの特徴
耐食性が抜群に高い
塩水噴霧試験において通常溶融亜鉛 めつきの10倍の耐食性。特に塩害に強く，沿岸部，融雪剤を使用する道路付近の鋼鉄製品の防錆 に最適。（株式会社興和工業所HP より引用）
—通常のグレーチング
塩害に対し強いSGめつきグレーチング
＋TSステンレス排水桝の組み合わせを ご検討ください。

塗装例

通常，耐候性や保護の為の塗装は不要ですが景観上で塗装が必要な場合，ご相談下さい。
（塗装は当社では行つており ません。外注となります）

（2）溢水防止パッキン例

メイコーエンジニヤリング株式会社製
「RDジョイント」を使用した例になります。集水栁と下部配管を密閉接続し，漏水か溢水 を防止します。 \rightarrow P．25をご覧下さい

（3）床版排水材例

ステンレス製床版排水材
「TSステンレス排水桝」「高気密ステンレス排水管」と組み合わせオールステンレスで のご提案もお勧めです。 フレキシブルチューブ接続部もステンレス製 の場合，損傷を防ぐことができます。
※他社製品となります。
詳細仕様は各製品で異なります。詳細は各社へお問合せ下さい

（5）負圧対策例

【丸型管】

ゲリラ豪雨等による想定外の降雨時に排水管内へ負圧が発生し，伸縮継手を破損するばかり ではなく排水管をも破損することがあります。この現象を低減させる為に，空気孔を設ける場合 があります。写真，図面はメイコーエンジニヤリング株式会社の負圧対策専用品「エアハンター」 を使用し対策を施した例になります。

高気密ステンレス排水管／TS排水桝 特畋ご提案例（3）－7
高気密ステンレス排水管 経過写真 ※撮影時点での経覓年数を表記
（1）兵庫県朝来郡 撮影時 設置後約10年

冬季融雪剤散布あり
（2）長野県伊那市 撮影時 設置後約16年

ダム湖上の橋梁です
（3）新潟県糸魚川市 撮影時 設置後約5年

海水による塩害が激しい環境です
（5）福島県二本松市 撮影時設置後約7年
（4）長野県飯田市 撮影時 設置後約13年

冬季融雪剤散布あり
（6）奈良県十津川村 撮影時 設置後約10年

奈良県，和歌山県の県境近くです
（9）三重県四日市市 撮影時設置後約10年

（7）岐阜県高山市 撮影時 設置後約9年

冬季融雪剤散布あり
（10）愛知県名古屋市 撮影時設置後約14年

海に近い河川下流の橋梁です

冬季融雪剤散布あり
（8）長野県上田市 撮影時 設置後約 9 年

冬季融雪剤散布あり
（11）神奈川県横浜市 撮影時設置後約6年

橋梁上，一般道とも交通量の多い高架橋です

高気密ステンレス排水管／TS排水桝 特徵 ご提案例（3）－8

特におすすめします

- 寒冷地，塩害地等の厳しい環境 •交通量多い箇所（規制や高車使用が困難）
- 跨線橋，跨道橋，河川上，ハイピア等，維持管理の困難な環境
※試算，比較表，提案書等を作成します。お気軽にお申し付け下さい

寒冷地への施工例（1）
福井県大野市

ため池上への施工例
奈良県大和郡山市

港湾への施工例鹿児島県鹿児島市

跨道橋への施工例長野県上伊那郡

寒冷地への施工例（2）
青森県東津軽郡

河川上（上流）への施工例群馬県濒川市

海上への施工例新毗県糸魚川市

跨線橋への施工例
山形県山形市

寒冷地への施工例（3）北海道上川郡

河川上（下流）への施工例富山県富山市

ダム湖への施工例岐阜県揖斐郡

ハイピアへの施工例
長野県上伊那郡

実績は600件以上ございます。橋梁排水関係で何かございましたらお気軽にご連絡下さい。

高気密ステンレス排水管／TS排水桝 特畋 ご提案例（3）－9

高気密ステンレス排水管 ギャラリー①

－新設橋 鋼橋
TSステンレス排水桝とTS－PIPE Ф200，¢250，φ 300を使用しています
－新設橋 PC橋
φ 200を使用しています

－新設橋 鋼橋－PC橋
TSステンレス排水桝とTS－PIPE φ 200を使用しています

－新設橋 PC橋
TSステンレス排水桝をTS－PIPE φ 200を使用しています

－新設橋 PC橋
ゆ200を使用しています

－新設橋 PC橋
TSステンレス排水桝とTS－PIPE φ 200を使用しています

高気密ステンレス排水䇾／TS排水桝 特倒ご提案例（3）－10
高気密ステンレス排水管 ギャラリー②

－トンネル換気施設内

万一の火災時に備え，難燃材料ということで使用頂きました

－補修工事
甲100を使用しています

－補修工事

φ 200を使用しています

－新設橋 鋼橋
ب200を使用しています

－補修工事
4100 を使用しています

－補修工事
$\varphi 100$ を使用しています

橋梁用排水装置「高気密ステンレス排水管」と「円筒型枠」

〒483－8257愛知県江南市上奈良町豊里37
TEL：（0587）53－1545
FAX：（0587）53－5195
E－MAIL ：mail＠tospa．jp
HP ：http：／／www．tospa．jp
※お問い合わせの際は「ご提案•事例集2017年度版」を見たとお伝えいただくとスムーズです
取扱店

- 改良のため，予告なしに仕様を変更する場合があります。
- 製品の詳しい資料，説明等のご要望は上記連絡先までお気軽にご連絡下さい。

[^0]: EPDM（エチレンプロピレンジエンゴム）：耐候性•耐寒性•耐オゾン性•耐老化性•溶剤性などに優れたゴムになります。EPDMのほか，FRPシートやシリコンゴムを使用した絶縁方法もあります。

